De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath}

Reageren...

Re: Re: Vector

Ik heb een punt A, een punt B en een punt C
Stel: A = (0,0) B = (1,0) en C = (0,1)
Nu trekken we een cirkel rond B met straal b en een cirkel rond C met straal c
b en c liggen tussen 0 en 1

Er is een cirkel die snijd door het punt A en raakt aan de cirkels van B en C.
De vraag is, hoe kom ik aan de definitie van die cirkel met positie (x,y) en straal r bij verschillende b en c

Ik loop vast op het feit dat je 3 vergelijkingen krijgt met 3 onbekenden.

Uit A:
(0-x)2 + (0-y)2 = (r + 0)2
Uit B:
(1-x)2 + (0-y)2 = (r + b)2
Uit C:
(0-x)2 + (1-y)2 = (r + c)2

Dat valt uit te schrijven als:
x2 + y2 = r2
1 + x + x2 + y2 = r2 + b2 - 2rb
x2 + 1 + y + y2 = r2 + a2 - 2ra

Bij de volgende stap begin ik echt te twijfelen:
Kan dit wel zo simpel?
x = -1 + b2 - 2rb
y = -1 + a2 - 2ra

Het levert volgens mij bovendien niet meer op dan een verhoudingsgetal tussen x en y ofwel de lijn vanuit A door het middelpunt van de cirkel.

Kunnen jullie mij verder helpen?

Antwoord

dag Ko,

Ik begrijp niet hoe je (1-x)2 uitwerkt tot 1 + x + x2
Hetzelfde geldt voor (1-y)2 en (r+b)2
Verder begrijp ik niet waar die a ineens vandaan komt.
Afgezien hiervan, wordt het inderdaad best simpel, omdat je in de twee laatste vergelijkingen steeds x2+y2 kunt vervangen door r2, die dan ook nog wegvalt.
Met je laatste opmerking heb je ook gelijk: je krijgt x en y, beide uitgedrukt in b, c en r.
Substitueer dit in x2+y2=r2, en bereken r hieruit. Denk goed na over beide oplossingen.
Zijn dit alle oplossingen? Denk ook aan de mogelijkheid dat de cirkels elkaar inwendig raken. Wat betekent dat voor de tweede en derde vergelijking?
succes,

Gebruik dit formulier alleen om te reageren op de inhoud van de vraag en/of het antwoord hierboven. Voor het stellen van nieuwe vragen kan je gebruik maken van een vraag stellen in het menu aan de linker kant. Alvast bedankt!

Reactie:

Klik eerst in het tekstvlak voordat je deze knopjes en tekens gebruikt.
Pas op: onderstaande knopjes en speciale karakters werken niet bij ALLE browsers!


áâæàåãäßçéêèëíîìïñóôòøõöúûùüýÿ½¼¾£®©




$\mathbf{N}$ $\mathbf{Z}$ $\mathbf{Q}$ $\mathbf{R}$ $\mathbf{C}$
Categorie: Ruimtemeetkunde
Ik ben:
Naam:
Emailadres:
Datum:19-5-2024